

1	Formation mechanisms of atmospheric nitrate and sulfate during the
2	winter haze pollution periods in Beijing: gas-phase, heterogeneous
3	and aqueous-phase chemistry
4	Pengfei Liu ^{1, 2, 3, 5} , Can Ye ^{1, 3} , Chaoyang Xue ^{1, 3} , Chenglong Zhang ^{1, 2, 3} , Yujing Mu ^{1, 2, 3, 4} , Xu
5	Sun ^{1, 6}
6 7 8	 ¹ Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. ² Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
9	³ University of Chinese Academy of Sciences, Beijing, 100049, China.
10 11	⁴ National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
12	⁵ Key Laboratory of Atmospheric Chemistry, China Meteorological Administration, Beijing, 100081, China.
13	⁶ Beijing Urban Ecosystem Research Station, Beijing, 100085, China.
14	Correspondence: Yujing Mu (<u>vjmu@rcees.ac.cn</u>)
15	Abstract
16	A vast area in China is currently going through severe haze episodes with drastically elevated
17	concentrations of $PM_{2.5}$ in winter. Nitrate and sulfate are main constituents of $PM_{2.5}$ but their
18	formations via NO ₂ and SO ₂ oxidation are still not comprehensively understood, especially under
19	different pollution or atmospheric relative humidity (RH) conditions. To elucidate formation
20	pathways of nitrate and sulfate in different polluted cases, hourly samples of $PM_{2.5}$ were collected
21	continuously in Beijing during the wintertime of 2016. Three serious pollution cases were
22	identified reasonably during the sampling period and the secondary formations of nitrate and
23	sulfate were found to make a dominant contribution to atmospheric $\ensuremath{\text{PM}_{2.5}}$ under the relatively high
24	RH condition. The significant correlation between NOR and $NO_2 \times O_3$ during the nighttime under
25	the RH $\!\geq\!\!60\%$ condition indicated that the heterogeneous hydrolysis of N_2O_5 involving aerosol
26	liquid water was responsible for the nocturnal formation of nitrate at the extremely high RH levels.
27	The more coincident trend of NOR and HONO \times DR (direct radiation) \times NO ₂ than Dust \times NO ₂

- 28 during the daytime under the 30%<RH<60% condition provided convincing evidence that the 29 gas-phase reaction of NO₂ with OH played a pivotal role in the diurnal formation of nitrate at 30 moderate RH levels. The extremely high mean values of SOR during the whole day under the 31 RH≥60% condition could be ascribed to the evident contribution of SO₂ aqueous-phase oxidation 32 to the formation of sulfate during the severe pollution episodes. Based on the parameters measured 33 in this study and the known sulfate production rate calculation method, the oxidation pathway of 34 H₂O₂ rather than NO₂ was found to contribute greatly to the aqueous-phase formation of sulfate. 35 1. Introduction 36 In recent years, severe haze has occurred frequently in Beijing as well as the North China 37 Plain (NCP) during the wintertime, which has aroused great attention from the public due to its adverse impact on atmospheric visibility, air quality and human health (Chan and Yao, 38
- 39 2008;Zhang et al., 2012;Zhang et al., 2015).

40 To mitigate the severe haze pollution situations, a series of regulatory measures for primary pollution sources have been implemented by the Chinese government. For example, coal 41 42 combustion for heating in winter has gradually been replaced with electricity and natural gas in 43 the NCP, coal-fired power plants have been strictly required to install flue-gas denitration and 44 desulfurization systems (Chen et al., 2014), the stricter control measures such as terminating 45 production in industries and construction as well as the odd and even number rule for vehicles have been performed in megacities during the period of the red alert for haze and so on. These 46 47 actions have made tremendous effects to decline pollution levels of primary pollutants including 48 $PM_{2.5}$ (fine particulate matter with an aerodynamic diameter less than 2.5 μ m) in recent years (Li 49 et al., 2019). However, the serious pollution events still occurred in many areas of

50	Beijing-Tianjin-Hebei (BTH) region in December 2016 and January 2017 (Li et al., 2019). It has
51	been acknowledged that the severe haze pollution is mainly ascribed to stagnant meteorological
52	conditions with high atmospheric relative humidity (RH) and low mixed boundary layer height,
53	strong emissions of primary gaseous pollutants and rapid formation of secondary inorganic
54	aerosols (SIAs, the sum of sulfate, nitrate and ammonium), especially sulfate and nitrate (Cheng et
55	al., 2016;Guo et al., 2014;Huang et al., 2014). Some studies suggested that the contribution of
56	SIAs to PM _{2.5} was higher than 50 % during the most serious haze days (Quan et al., 2014;Xu et al.,
57	2017;Zheng et al., 2015a).
58	Generally, atmospheric sulfate and nitrate are formed through the oxidations of the precursor
59	gases (SO2 and NO2) by oxidants (e.g. OH radical, O3) via gas-phase, heterogeneous and

60 aqueous-phase reactions (Ravishankara, 1997; Wang et al., 2013; Yang et al., 2015). It should be 61 noted that the recent study proposed the remarkable emissions of primary sulfate from residential 62 coal combustion with the sulfur contents of coal in range of 0.81-1.88 % in Xi'an (Dai et al., 63 2019), but the primary emissions of sulfate could be neglected due to the extremely low sulfur 64 content of coal (0.26-0.34 %) used prevailingly in the NCP (Du et al., 2016;Li et al., 2016). 65 Atmospheric RH is a key factor that facilitates the SIAs formation and aggravates the haze pollution (Wu et al., 2019), and hence the secondary formations of sulfate and nitrate are simply 66 67 considered to be mainly via gas-phase reaction at relatively low atmospheric RH levels (RH<30 %) 68 and heterogeneous reactions and aqueous-phase reactions at relatively high atmospheric RH levels 69 (RH>60 %) (Li et al., 2017). However, their formation mechanisms at different atmospheric RH 70 levels still remain controversial and unclear (Cheng et al., 2016;Ge et al., 2017;Guo et al., 2017;Li 71 et al., 2018;Liu et al., 2017a;Wang et al., 2016;Yang et al., 2017). For example, the recent studies

72	proposed that atmospheric SO_2 oxidation by NO_2 dissolved in aqueous aerosol phases under the
73	extremely high atmospheric RH conditions played a dominant role in sulfate formation under
74	almost neutral aerosol solutions (a pH range of 5.4-7.0) during the serious pollution periods
75	(Cheng et al., 2016; Wang et al., 2018a; Wang et al., 2016). However, Liu et al. (2017a) and Guo et
76	al. (2017) found that the aerosol pH estimated by ISORROPIA-II model was moderately acidic (a
77	pH range of 3.0-4.9) and thus the pathway of SO_2 aqueous-phase oxidation by dissolved NO_2 was
78	unimportant during severe haze events in China. Additionally, although the pathway of $N_2 O_5$
79	heterogeneous hydrolysis has been recognized as being responsible for the nocturnal formation of
80	NO3 ⁻ under relatively high atmospheric RH conditions (Tham et al., 2018;Wang et al.,
81	2018b;Wang et al., 2018c), the effects of NO2 gas-phase chemistry and NO2 heterogeneous
82	chemistry on the diurnal formation of NO3 ⁻ under moderate atmospheric RH conditions
83	(30 % <rh<60 %)="" <math="" been="" have="" in="" measurements="" not="" of="" species="" the="" therefore,="" understood.="" yet="">PM_{2.5}</rh<60>
84	in different polluted cases during the wintertime are urgently needed to elucidate formation
85	pathways of sulfate and nitrate.
96	To diverse to be only file and the file of the second state of the

In this study, hourly filter samples of PM_{2.5} were collected continuously in Beijing during the wintertime of 2016, and the pollution characteristics and formation mechanisms of sulfate and nitrate in the PM_{2.5} samples were investigated comprehensively under different atmospheric RH conditions in relation to gas-phase, heterogeneous and aqueous-phase chemistry.

90 2. Materials and Methods

91 2.1. Sampling and analysis

92 The sampling site was chosen on the rooftop (around 25 m above the ground) of a six-story
93 building in Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences

94	(RCEES, CAS), which was located in the northwest of Beijing and had been described in detail by
95	our previous studies (Liu et al., 2016a;Liu et al., 2017b). The location of the sampling site
96	$(40^{\circ}00'29.85'' \text{ N}, 116^{\circ}20'29.71'' \text{ E})$ is presented in Figure S1. Hourly PM _{2.5} samples were collected
97	on prebaked quartz fiber filters (90mm, Munktell) from January $7^{\rm th}$ to $23^{\rm th}$ of 2016 by
98	median-volume samplers (Laoying-2030) with a flow rate of 100 L min ⁻¹ . Water-soluble ions
99	(WSI), including Na ⁺ , NH ₄ ⁺ , Mg ²⁺ , Ca ²⁺ , K ⁺ , Cl ⁻ , NO ₂ ⁻ , NO ₃ ⁻ and SO ₄ ²⁻ , as well as carbon
100	components including organic carbon (OC) and element carbon (EC) in the filter samples were
101	analyzed by ion chromatography (Wayeal IC6200) and thermal optical carbon analyzer
102	(DRI-2001A), respectively (Liu et al., 2017b). Analysis relevant for quality assurance & quality
103	control (QA/QC) was presented in detail in section M1 of the Supplementary Information (SIs).
104	Atmospheric H_2O_2 and HONO were monitored by AL2021- H_2O_2 monitor (AERO laser, Germany)
105	and a set of double-wall glass stripping coil sampler coupled with ion chromatography (SC-IC),
106	respectively (Ye et al., 2018;Xue et al., 2019a;Xue et al., 2019b). More details about the
107	measurements of H_2O_2 and HONO were ascribed in section M2 of the SIs. Meteorological data,
108	including wind speed, wind direction, ambient temperature and RH, as well as air quality index
109	(AQI) derived by PM _{2.5} , SO ₂ , NO _x , CO and O ₃ were obtained from Beijing urban ecosystem
110	research station in RCEES, CAS (<u>http://www.bjurban.rcees.cas.cn/</u>).

111 2.2. Aerosol liquid water contents and pH prediction by ISORROPIA-II model

112 The ISORROPIA-II model was employed to calculate the equilibrium composition for 113 $Na^+-K^+-Ca^{2+}-Mg^{2+}-NH_4^+-Cl^--NO_3^--SO_4^{2-}-H_2O$ aerosol system, which is widely used in regional 114 and global atmospheric models and has been successfully applied in numerous studies for 115 predicting the physical state and composition of atmospheric inorganic aerosols (Fountoukis and

116	Nenes, 2007;Guo et al., 2015;Shi et al., 2017). It can be used in two modes: forward mode and
117	reverse mode. Forward mode calculates the equilibrium partitioning given the total concentrations
118	of gas and aerosol species, whereas reverse mode involves predicting the thermodynamic
119	compositions based only on the concentrations of aerosol components. Forward mode was
120	adopted in this study because reverse mode calculations have been verified to be not suitable to
121	characterize aerosol acidity (Guo et al., 2015;Hennigan et al., 2015;Murphy et al., 2017;Pathak et
122	al., 2004;Weber et al., 2016). The ISORROPIA-II model is available in "metastable" or "solid +
123	liquid" state solutions. Considering the relatively high RH during the sampling period, the
124	metastable state solution was selected in this study due to its better performance than the latter
125	(Bougiatioti et al., 2016;Guo et al., 2015;Liu et al., 2017a;Weber et al., 2016). Additionally,
126	although the gaseous HNO3, H2SO4, HCl and NH3 were not measured in this study, gas-phase
127	input with the exception of NH3 has an insignificant impact on the aerosol liquid water contents
128	(ALWC) and pH calculation due to the lower concentrations of HNO ₃ , $\mathrm{H}_2\mathrm{SO}_4$ and HCl than NH_3
129	in the atmosphere (Ding et al., 2019;Guo et al., 2017). Based on the long-term measurement in the
130	winter of Beijing, an empirical equation between NO_x and NH_3 concentrations was derived from
131	the previous study (Meng et al., 2011), that is, NH_3 (ppb) = $0.34 \times NO_x$ (ppb) + 0.63, which was
132	employed for estimating the NH3 concentration in this study. The predicted daily average
133	concentrations of NH3 varied from 3.3 μg m^-3 to 36.9 μg m^-3, with a mean value of 16.6 μg m^-3
134	and a median value of 14.6 μg m^-3, which were in line with those (7.6-38.1 μg m^-3, 18.2 μg m^-3
135	and 16.2 $\mu g~m^{\text{-}3}$ for the daily average concentrations, the mean value and the median value of $NH_3,$
136	respectively) during the winter of 2013 in Beijing in the previous study (Zhao et al., 2016).

137 Then, the aerosol pH could be calculated by the following equation:

138	$pH = -\log_{10}\frac{1000 \times H^+}{W}$
139	where H^+ (µg m ⁻³) and W (µg m ⁻³) are the equilibrium particle hydrogen ion concentration
140	and aerosol water contents, respectively, both of which could be output from ISORROPIA-II.
141	2.3. Production of sulfate in aqueous-phase reactions
142	The previous studies showed that there were six pathways of the aqueous-phase oxidation of
143	SO2 to the production of sulfate, i.e. H2O2 oxidation, O3 oxidation, NO2 oxidation, transition metal
144	ions (TMI) + O_2 oxidation, methyl hydrogen peroxide (MHP) oxidation and peroxyacetic acid
145	(PAA) oxidation (Cheng et al., 2016;Zheng et al., 2015a). Because some TMIs, such as Ti(III),
146	V(III), Cr(III), Co(II), Ni(II), Cu(II) and Zn(II), displayed much less catalytic activities (Cheng et
147	al., 2016), only Fe(III) and Mn(II) were considered in this study. In addition, due to the extremely
148	low concentrations of MHP and PAA in the atmosphere, their contributions to the production of
149	sulfate could be ignored (Zheng et al., 2015a). To investigate the formation mechanism of sulfate
150	during the serious pollution episodes, the contributions of O_3 , H_2O_2 , NO_2 and $Fe(III) + Mn(II)$ to
151	the production of sulfate in aqueous-phase reactions were calculated by the formulas as follows
152	(Cheng et al., 2016; Ibusuki and Takeuchi, 1987; Seinfeld and Pandis, 2006):

153
$$-\left(\frac{d[S(IV)]}{dt}\right)_{O_3} = \left(k_0[SO_2 \cdot H_2O] + k_1[HSO_3^-] + k_2[SO_3^{2-}]\right)[O_{3(aq)}]$$
(R1)

154
$$-\left(\frac{d[S(IV)]}{dt}\right)_{H_2O_2} = \frac{k_3[H^+][HSO_3^-][H_2O_{2(aq)}]}{1+K[H^+]}$$
(R2)

155
$$-\left(\frac{d[S(IV)]}{dt}\right)_{Fe(III)+Mn(II)} = k_4[H^+]^a[Mn(II)][Fe(III)][S(IV)]$$
(R3)

156
$$-\left(\frac{d[S(IV)]}{dt}\right)_{NO_2} = k_5[NO_{2(aq)}][S(IV)]$$
(R4)

157 where
$$k_0 = 2.4 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$$
, $k_1 = 3.7 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$, $k_2 = 1.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, $k_3 = 7.45 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$, $K = 1.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, $k_2 = 1.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, $k_3 = 7.45 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$, $K = 1.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, $k_3 = 1.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, $k_4 = 1.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, $k_5 = 1.5 \times 10^9 \text{$

158 13
$$M^{-1}$$
, $k_4 = 3.72 \times 10^7 M^{-1} s^{-1}$, $a = -0.74$ (pH ≤ 4.2) or $k_4 = 2.51 \times 10^{13} M^{-1} s^{-1}$, $a = 0.67$ (pH>4.2), and

 $159 \qquad k_5 = (1.24 - 1.67) \times 10^7 \, \text{M}^{-1} \, \text{s}^{-1} \ (5.3 \le p \text{H} \le 8.7, \ \text{the linear interpolated values were used for pH between}$

160	5.3 and 8.7) at 298 K (Clifton et al., 1988); $[O_{3(aq)}]$, $[H_2O_{2(aq)}]$ and $[NO_{2(aq)}]$ could be calculated by
161	the Henry's constants which are 1.1×10^{-2} M atm ⁻¹ , 1.0×10^{5} M atm ⁻¹ and 1.0×10^{-2} M atm ⁻¹ at 298 K
162	for O ₃ , H ₂ O ₂ and NO ₂ respectively (Seinfeld and Pandis, 2006). As for [Fe(III)] and [Mn(II)], their
163	concentrations entirely depended on the values of pH due to the precipitation equilibriums of
164	Fe(OH)3 and Mn(OH)2 (Graedel and Weschler, 1981). Considering the aqueous-phase ionization
165	equilibrium of SO ₂ , the Henry's constants of HSO_3^- , SO_3^{2-} and $S(IV)$ could be expressed by the
166	equations as follows (Seinfeld and Pandis, 2006):

167
$$H_{HSO_3^-}^* = H_{SO_2} \frac{K_{S_1}}{[H^+]}$$
(R5)

168
$$H_{SO_3^{2-}}^* = H_{SO_2} \frac{K_{S1}K_{S2}}{[H^+]^2}$$
(R6)

169
$$H_{S(IV)}^* = H_{SO_2} \left(1 + \frac{K_{S1}}{[H^+]} + \frac{K_{S1}K_{S2}}{[H^+]^2} \right)$$
(R7)

170 where $H_{SO2} = 1.23$ M atm⁻¹, $K_{S1} = 1.3 \times 10^{-2}$ M and $K_{S2} = 6.6 \times 10^{-8}$ M at 298 K. In addition, all 171 of rate constants (k), Henry's constants (H) and ionization constants (K) are evidently influenced 172 on the ambient temperature and are calibrated by the formulas as follows (Seinfeld and Pandis, 173 2006):

174
$$k(T) = k(T_0)e^{\left[-\frac{E}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]}$$
(R8)

175
$$H(T) = H(T_0)e^{\left[-\frac{\Delta H}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]}$$
(R9)

176
$$K(T) = K(T_0)e^{\left[-\frac{E}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]}$$
(R10)

177 where T is the ambient temperature, $T_0=298$ K, both E/R and Δ H/R varied in the different

178 equations and their values could be found in Cheng et al., (2016).

179 Furthermore, mass transport was also considered for multiphase reactions in different

180 medium and across the interface in section M3 of the SIs.

3. Results and Discussion 181

182 **3.1.** Variation characteristics of the species in PM_{2.5} and typical gaseous pollutants

183	The concentrations of the species in PM _{2.5} and typical gaseous pollutants including NO _x , SO ₂ ,
184	O ₃ , HONO and H ₂ O ₂ as well as atmospheric RH are shown in Figure 1. The meteorological
185	parameters (wind speed, wind direction, ambient temperature and direct radiation (DR)) as well as
186	the concentrations of $PM_{2.5}$ are displayed in Figure S2. During the sampling period, the
187	concentrations of the species in $\ensuremath{\text{PM}_{2.5}}$ and typical gaseous pollutants varied similarly on a
188	timescale of hours with a distinct periodic cycle of 3-4 days, suggesting that meteorological
189	conditions played a vital role in accumulation and dispersion of atmospheric pollutants (Xu et al.,
190	2011;Zheng et al., 2015b). For example, the relatively high levels of $PM_{2.5}$ (>100 µg m ⁻³) usually
191	occurred under the relatively stable meteorological conditions with the low south wind speed (<2
192	m s ⁻¹) and the high RH (>60 %) which favored the accumulation of pollutants. Besides
193	meteorological conditions, the extremely high concentrations of the species in $\ensuremath{\text{PM}_{2.5}}$ might be
194	mainly ascribed to strong emissions of primary pollutants and rapid formation of secondary
195	aerosols during the wintertime in Beijing.

196 The average concentrations of the species in PM2.5 and typical gaseous pollutants during 197 clean or slightly polluted (C&SP) episodes (PM2.5<75 µg m⁻³), during polluted or heavy polluted 198 (P&HP) episodes (PM_{2.5} \geq 75 µg m⁻³) and during the whole sampling period are illustrated in Table 199 1. It is evident that the average concentrations of NO3, SO42, NH4+, OC and EC during P&HP 200 episodes were about a factor of 5.0, 4.1, 6.1, 3.6 and 3.2 greater than those during C&SP episodes, 201 respectively, indicating that the formations of SIAs were more efficient compared to other species 202 in PM_{2.5} during the serious pollution episodes. Given that the average concentrations of gaseous 203 precursors (NO2 and SO2) during P&HP episodes were approximately a factor of 2.0-2.2 greater

204	than those during C&SP episodes, the obviously higher elevation of NO_3^{-} and $\mathrm{SO}_4^{2\text{-}}$ implied that
205	the oxidations of NO_2 and SO_2 by the major atmospheric oxidizing agents (OH radicals, O_3 and
206	$\mathrm{H}_{2}\mathrm{O}_{2}$ etc.) might be greatly accelerated due to the relatively high concentrations of oxidants and
207	atmospheric RH during the serious pollution episodes (Figure 1). The average concentration of
208	$\mathrm{H_2O_2}$ was found to be a factor of 1.7 greater during P&HP episodes than during C&SP episodes,
209	indicating that atmospheric H ₂ O ₂ might contribute to the formation of SIAs especially sulfate
210	during the serious pollution episodes with high atmospheric RH, which will be discussed in Sect.
211	3.3.2. However, the obvious decrease in O_3 average concentration was observed during P&HP
212	episodes compared to C&SP episodes, which was mainly attributed to the relatively weak solar
213	radiation and the titration of NO during the serious pollution episodes (Ye et al., 2018). In addition,
214	the evidently higher average concentration of HONO during P&HP episodes than during C&SP
215	episodes might be also due to the relatively weak solar radiation as well as the heterogeneous
216	reaction of NO ₂ on particle surfaces during the serious pollution episodes (Tong et al., 2016;Wang
217	et al., 2017).

218 **3.2.** Three serious pollution cases during the sampling period

Based on the transition from the clean to polluted periods, three haze cases were identified during the sampling period (Figure 1 and Figure S2): from 13:00 on January 8th to 1:00 on January 11th (Case 1), from 14:00 on January 14th to 7:00 on January 17th (Case 2), and from 8:00 on January 19th to 2:00 on January 22nd (Case 3). The serious pollution duration in the three cases could last 1-3 days due to the differences of their formation mechanisms.

In Case 1, the variation trends of the concentrations of the species in $PM_{2.5}$, NO_x , SO_2 ,

225 HONO and H₂O₂ were almost identical and exhibited three pollution peaks at night (Figure 1),

226	which might be ascribed to the possibility that the decrease of nocturnal mixed boundary layer
227	accelerated the pollutant accumulation (Bei et al., 2017;Zhong et al., 2019). Considering the
228	relatively low RH (15-40 %) and wind speeds (<2 m s ⁻¹) in Case 1 (Figure S2), primary emissions
229	around the sampling site were suspected to be a dominant source for the increase in the $\ensuremath{\text{PM}_{2.5}}$
230	concentrations. Further evidence is that the correlation between the concentrations of $\text{PM}_{2.5}$ and
231	CO is better in Case 1 (R ² =0.55) than in Case 2 and Case 3 (R ² =0.20~0.52) (Figure S3). Identical
232	to Case 1, three obvious pollution peaks were also observed in Case 2 (Figure 1). The variation
233	trends of the concentrations of the species in $PM_{2.5}$ and typical gaseous pollutants at the first peak
234	in Case 2 were found to be similar with those in Case 1, which were mainly attributed to their
235	similar formation mechanism. However, the evident decreases in NO_{x} and SO_{2} were observed
236	when the concentrations of the species in $\ensuremath{\text{PM}_{2.5}}$ were increasing and the atmospheric oxidation
237	pollutant (e.g. $\mathrm{H_2O_2}$) concentration peaks were prior to others at the last two peaks in Case 2,
238	suggesting that secondary formation from gaseous precursors might be dominant for $\text{PM}_{2.5}$
239	pollution. The relatively high RH (50-80 %) and the low south wind speeds (<2 m s ⁻¹) in Case 2
240	(Figure S2) provided further evidence for the above speculation. In contrast to Case 1 and Case 2,
241	the relatively high south wind speeds (>3 m s ⁻¹) (Figure S2) with the concentrations of the species
242	in $PM_{2.5}$ and typical gaseous pollutants increasing slowly (Figure 1) at the beginning of Case 3 $$
243	indicated that regional transportation might be responsible for the atmospheric species.
244	Subsequently, the concentrations of the species in $\ensuremath{\text{PM}_{2.5}}$ remained relatively high when the
245	atmospheric RH lasted more than 60 %, implying that secondary formation from gaseous
246	precursors dominated PM _{2.5} pollution during the late period of Case 3.

247 The average mass proportions of the species in $PM_{2.5}$ in the three cases are illustrated in

248	Figure S4, the proportions of the primary species such as EC (10-13 %), Cl ⁻ (6-7 %) and Na ⁺ (4 %)
249	in the three cases were almost identical, indicating that primary particle emissions were relatively
250	stable during the sampling period. However, the proportions of SIA in Case 2 (42 %) and Case 3
251	(38 %) were conspicuously greater than that in Case 1 (28 %), further confirming that secondary
252	formation of inorganic ions (e.g. nitrate, sulfate) made a significant contribution to atmospheric
253	PM _{2.5} in Case 2 and Case 3.
254	3.3. Formation mechanism of nitrate and sulfate during serious pollution episodes
255	As for nitrate and sulfate in the three cases, the highest mass proportion (18 %) of nitrate was
256	observed in Case 2, whereas the highest mass proportion (15 %) of sulfate was found in Case 3
257	(Figure S4). Although the concentrations of SO_2 were about a factor of 5 lower than the
258	concentrations of NO_2 in both Case 2 and Case 3 (Figure 1), the extremely high proportion of
259	sulfate in Case 3 might be ascribed to the long-lasting plateau of RH (Figure S2) because the
260	aqueous-phase reaction could accelerate the conversion of SO_2 to $\mathrm{SO}_4^{2\text{-}}$. To further investigate the
261	pollution characteristics of nitrate and sulfate during the serious pollution episodes, the relations
262	between NOR (NOR = NO_3^{-1} ($NO_3^{-1}+NO_x$)) as well as SOR (SOR = SO_4^{2-1} ($SO_4^{2-1}+SO_2$)) and RH
263	are shown in Figure 2. There were obvious differences in the variations of NOR and SOR under
264	different atmospheric RH conditions. The variation trends of NOR and SOR almost stayed the
265	same when atmospheric RH was below 30 %, and then simultaneously increased with atmospheric
266	RH in the range of 30-60 %. The enhanced gas-phase reaction and the heterogeneous reaction
267	involving aerosol liquid water might make a remarkable contribution to the elevation of NOR and
268	SOR, respectively, which were further discussed in the following section. Subsequently, the
269	variation trend of NOR slowly decreased whereas the variation trend of SOR significantly

270	increased when atmospheric RH was above 60 %. The reduction of NOR might be due to the
271	deliquescence of nitrate at atmospheric RH around 60 % (Kuang et al., 2016;Liu et al., 2016b;Xue
272	et al., 2014), while the elevation of SOR revealed the dominant contribution of the aqueous-phase
273	reaction to the formation of sulfate.
274	3.3.1. Formation mechanism of nitrate
275	Atmospheric nitrate is considered to be mainly from NO ₂ oxidation by OH radical in the gas
276	phase, heterogeneous uptake of NO2 on the surface of particles and heterogeneous hydrolysis of
277	N ₂ O ₅ on wet aerosols or chloride-containing aerosols (He et al., 2014;He et al., 2018;Nie et al.,
278	2014;Ravishankara, 1997;Wang et al., 2018b). Since atmospheric N2O5 is usually produced by the
279	reaction of NO_3 radical with NO_2 as well as both NO_3 radical and N_2O_5 are easily photolytic
280	during the daytime, the heterogeneous hydrolysis of N_2O_5 is a nighttime pathway for the
281	formation of atmospheric nitrate (He et al., 2018;Wang et al., 2018b). As shown in Figure 3a, the
282	mean values of NOR during the nighttime remarkably elevated with atmospheric RH increasing,
283	the disproportionation of NO_2 and the heterogeneous hydrolysis of $\mathrm{N}_2\mathrm{O}_5$ involving aerosol liquid
284	water were suspected to dominate the nocturnal formation of nitrate under high RH conditions
285	during the sampling period (Ma et al., 2017;Wang et al., 2018b;Li et al., 2018). However, the
286	productions of HONO and nitrate should be equal through the disproportionation of NO2 (Ma et
287	al., 2017), which could not explain the wide gaps between the average concentrations of HONO
288	(about 6.5 $\mu g~m^{\text{-}3})$ and nitrate (about 20.1 $\mu g~m^{\text{-}3})$ observed at the nighttime under high RH
289	conditions during the sampling period. Thus, the disproportionation of NO_2 made insignificant
290	contribution to the nocturnal formation of nitrate under high RH conditions. Considering that the
291	formation of atmospheric NO ₃ radical is mainly via the oxidation of NO ₂ by O ₃ , the heterogeneous

292	hydrolysis of $\mathrm{N}_2\mathrm{O}_5$ occurs only at high O_3 and NO_2 levels during the nighttime (He et al.,
293	2018;Wang et al., 2018b). Therefore, the correlation between $NO_2 \times O_3$ and NOR can represent
294	roughly the contribution of the heterogeneous hydrolysis of N_2O_5 to atmospheric nitrate at night.
295	As shown in Figure 3b, the more significant correlation between $\mathrm{NO}_2\times\mathrm{O}_3$ and NOR under the
296	RH \geq 60 % condition (R ² =0.534) than under the RH<60 % condition (R ² <0.005) at the nighttime
297	(19:00-6:00) during the sampling period further confirmed that the heterogeneous hydrolysis of
298	N2O5 on wet aerosols made a great contribution to atmospheric nocturnal nitrate under high RH
299	conditions.
300	However, the obvious increase in the mean values of NOR during the daytime (especially for
301	10:00-17:00) under the 30 % <rh<60 %="" (figure="" 3a)="" additional="" condition="" indicated="" sources<="" td="" that=""></rh<60>
302	rather than the heterogeneous hydrolysis of N_2O_5 were responsible for the formation of nitrate. To
303	explore the possible formation mechanisms of nitrate in this case, the daily variations of Dust (the
304	sum of Ca^{2+} and Mg^{2+}) \times NO2 and HONO (the main source of OH) \times DR \times NO2, which can
305	represent roughly the heterogeneous reaction of NO_2 on the surface of mineral aerosols and the
306	gas-phase reaction of NO ₂ with OH, are shown in Figure 3c and Figure 3d, respectively. The mean
307	values of HONO \times DR \times NO_2 during the daytime were found to be remarkably greater under the
308	30 % <rh<60 %="" condition="" rh<math="" than="" the="" under="">\leq30 % condition, whereas the mean values of Dust \times</rh<60>
309	NO2 almost stayed the same under the two different RH conditions. Considering the coincident
310	trend of NOR and HONO \times DR \times NO_2 during the daytime (10:00-17:00) under the 30 % <rh<60 %<="" td=""></rh<60>
311	condition, the gas-phase reaction of NO2 with OH played a key role in the diurnal formation of
312	nitrate at moderate RH levels with the haze pollution accumulating. It should be noted that the
313	mean values of HONO \times DR \times NO_2 decreased dramatically from 14:00 to 17:00 (Figure 3d),

314	which was not responsible for the high mean values of NOR at that time (Figure 3a). However, the
315	slight increase in the mean values of Dust \times NO2 after 14:00 was observed under the
316	30 % <rh<60 %="" (figure="" 3c)="" <math="" and="" condition="" display="inline" hence="" heterogeneous="" of="" reaction="" the="">\mathrm{NO}_2 on the</rh<60>
317	surface of mineral aerosols was suspected to contribute to the diurnal formation of nitrate at that
318	time under moderate RH condition.
319	3.3.2. Formation mechanism of sulfate
320	Atmospheric sulfate is principally from SO2 oxidation pathway, including gas-phase
321	reactions with OH radical or stabilized Criegee intermediates, heterogeneous-phase reactions on
322	the surface of particles and aqueous-phase reactions with dissolved $\mathrm{O}_3,\mathrm{NO}_2,\mathrm{H}_2\mathrm{O}_2$ and organic
323	peroxides, as well as autoxidation catalyzed by TMI (Cheng et al., 2016;Li et al.,
324	2018;Ravishankara, 1997;Shao et al., 2019;Wang et al., 2016;Xue et al., 2016;Zhang et al., 2018).
325	As shown in Figure 4, similar to the daily variations of NOR, the remarkable elevation of the
326	mean values of SOR after 14:00 under the 30 % <rh<60 %="" compared="" condition="" display="inline" rh<math="" the="" to="">\leq30 %</rh<60>
327	condition might be also ascribed to the heterogeneous reaction of SO_2 on the surface of mineral
328	aerosols. The extremely high mean values of SOR during the whole day under the RH $\!$
329	condition implied that aqueous oxidation of SO_2 dominated the formation of sulfate during the
330	severe pollution episodes, which was in line with previous studies (Zhang et al., 2018; Cheng et al.,
331	2016). A key factor that influenced the aqueous oxidation pathways for sulfate formation has been
332	considered to be the aerosol pH (Guo et al., 2017;Liu et al., 2017a), varying from 4.5 to 8.5 at
333	different atmospheric RH and sulfate levels during the sampling period (Figure 5a) on the basis of
334	the ISORROPIA-II model. Considering that the aqueous-phase chemistry of sulfate formation
335	usually occurs in severe haze events with relatively high atmospheric RH, the aerosol pH (4.5-5.3)

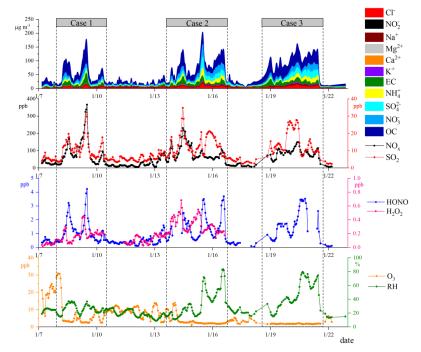
336	under the RH \geq 60 % condition, which was lower than those (5.4-7.0) in the studies of Wang et al.,
337	(2016) and Cheng et al., (2016) but was slightly higher than those (3.0-4.9) in the studies of Liu et
338	al., (2017a) and Guo et al., (2017), was adopted for evaluating sulfate production in this study. In
339	addition, in terms of oxidants, the obvious increase in the average concentration of NO_2 (Figure 5b)
340	and the evident decrease in the average concentration of O_3 (Figure 5d) were observed with the
341	deterioration of $PM_{2.5}$ pollution. Furthermore, the average concentration of $\mathrm{H_2O_2}$ was also found
342	to be extremely high (0.25 ppb) under the HP condition (Figure 5c) and was above 1 order of
343	magnitude higher than that (0.01 ppb) assumed by Cheng et al., (2016), which probably resulted in
344	the underestimation of the contribution of H_2O_2 to sulfate formation in the study of Cheng et al.,
345	(2016).
346	To further explore the contribution of H_2O_2 to sulfate production rate under the HP condition,
346 347	To further explore the contribution of H_2O_2 to sulfate production rate under the HP condition, the parameters measured in this study (Table 2) and the same approach that was adopted by Cheng
347	the parameters measured in this study (Table 2) and the same approach that was adopted by Cheng
347 348	the parameters measured in this study (Table 2) and the same approach that was adopted by Cheng et al., (2016) were used to calculate sulfate production. As shown in Figure 6, the relationships
347 348 349	the parameters measured in this study (Table 2) and the same approach that was adopted by Cheng et al., (2016) were used to calculate sulfate production. As shown in Figure 6, the relationships between different aqueous oxidation pathways and aerosol pH in this study were found to be very
347 348 349 350	the parameters measured in this study (Table 2) and the same approach that was adopted by Cheng et al., (2016) were used to calculate sulfate production. As shown in Figure 6, the relationships between different aqueous oxidation pathways and aerosol pH in this study were found to be very similar with those of Cheng et al., (2016). However, the contribution of H ₂ O ₂ to sulfate production
347348349350351	the parameters measured in this study (Table 2) and the same approach that was adopted by Cheng et al., (2016) were used to calculate sulfate production. As shown in Figure 6, the relationships between different aqueous oxidation pathways and aerosol pH in this study were found to be very similar with those of Cheng et al., (2016). However, the contribution of H_2O_2 to sulfate production rate was about a factor of 17 faster in this study (about 1.16 µg m ⁻³ h ⁻¹) than in the study (about
 347 348 349 350 351 352 	the parameters measured in this study (Table 2) and the same approach that was adopted by Cheng et al., (2016) were used to calculate sulfate production. As shown in Figure 6, the relationships between different aqueous oxidation pathways and aerosol pH in this study were found to be very similar with those of Cheng et al., (2016). However, the contribution of H ₂ O ₂ to sulfate production rate was about a factor of 17 faster in this study (about 1.16 μ g m ⁻³ h ⁻¹) than in the study (about 6.95×10 ⁻² μ g m ⁻³ h ⁻¹) of Cheng et al., (2016), implying that the contribution of H ₂ O ₂ to sulfate

356 previous studies (1.74-10.85 $\mu g~m^{\text{-}3}~h^{\text{-}1})$ was not necessarily expected.

357 4. Conclusion

358	Based on the comprehensive analysis of the pollution levels, the variation characteristics and
359	the formation mechanisms of the key species in $\ensuremath{\text{PM}_{2.5}}$ and the typical gaseous pollutants during
360	the winter haze pollution periods in Beijing, three serious haze pollution cases were obtained
361	during the sampling period and the SIAs formations especially nitrate and sulfate were found to
362	make an evident contribution to atmospheric $\ensuremath{\text{PM}_{2.5}}$ under the relatively high RH condition. The
363	significant correlation between $NO_2 \times O_3$ and NOR at night under the RH≥60 % condition
364	indicated that the heterogeneous hydrolysis of $\mathrm{N}_2\mathrm{O}_5$ on wet aerosols was responsible for the
365	nocturnal formation of nitrate under extremely high RH conditions. The more coincident trend of
366	NOR and HONO \times DR \times NO_2 than Dust \times NO_2 during the daytime under the 30 % <rh<60 %<="" td=""></rh<60>
367	condition suggested that the gas-phase reaction of NO_2 with OH played a key role in the diurnal
368	formation of nitrate under moderate RH conditions. The extremely high mean values of SOR
369	during the whole day under the RH $\!\!\!\geq\!\!60$ % condition could be explained by the dominant
370	contribution of aqueous-phase reaction of SO_2 to atmospheric sulfate formation during the severe
371	pollution episodes. According to the parameters measured in this study and the same approach that
372	was adopted by Cheng et al., (2016), the oxidation pathway of H_2O_2 rather than NO_2 was found to
373	contribute greatly to atmospheric sulfate formation.
374	Our results revealed that the heavy pollution events in winter usually occurred with high

374 Our results revealed that the neavy pollution events in whiter usually occurred with high 375 concentration levels of pollutants and oxidants as well as high liquid water contents of moderately 376 acidic aerosols in the NCP. Thus, emission controls of NO_x , SO_2 and VOCs especially under the 377 extremely high RH conditions are expected to reduce largely the pollution levels of nitrate and 378 sulfate in northern China and even in other pollution regions of China.



- 380 Data availability. Data are available from the corresponding author upon request
- 381 (yjmu@rcees.ac.cn)
- 382
- 383 Author contributions. YJM designed the experiments. PFL carried out the experiments and
- 384 prepared the manuscript. CY and CYX carried out the experiments. CLZ was involved in part of
- 385 the work. XS provided the meteorological data and trace gases in Beijing.
- 386
- 387 *Competing interests.* The authors declare that they have no conflict of interest.
- 388
- *Acknowledgement.* This work was supported by the National research program for Key issues in
 air pollution control (No. DQGG0103, DQGG0209, DQGG0206), the National Natural Science
 Foundation of China (No. 91544211, 4127805, 41575121, 21707151), the National Key Research
 and Development Program of China (No. 2016YFC0202200, 2017YFC0209703,
 2017YFF0108301) and Key Laboratory of Atmospheric Chemistry, China Meteorological
 Administration (No. 2018B03).
- 395

396 397

398 399

Figure 1. Time series of the species in PM_{2.5} and typical gaseous pollutants (NO_x, SO₂, O₃, HONO and H₂O₂) as well as atmospheric RH during the sampling period.

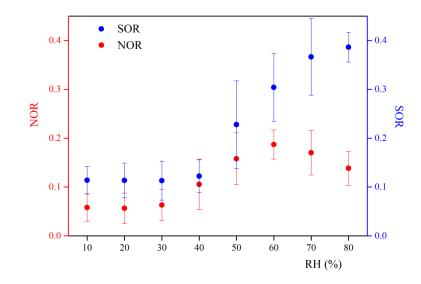


Figure 2. The relations between NOR as well as SOR and RH during the sampling period.

402

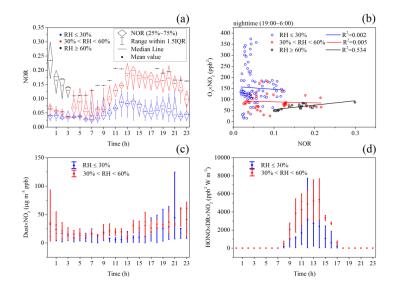
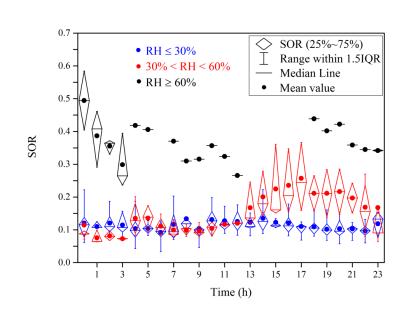


Figure 3. Daily variation of NOR (a), the correlation between NOR and O₃×NO₂ at the nighttime

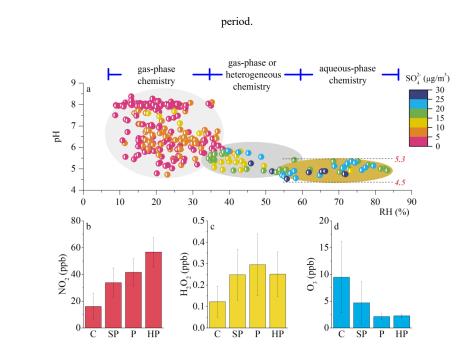
(b), daily variations of Dust×NO2 and HONO×DR×NO2 (c, d) under different atmospheric RH


conditions during the sampling period.

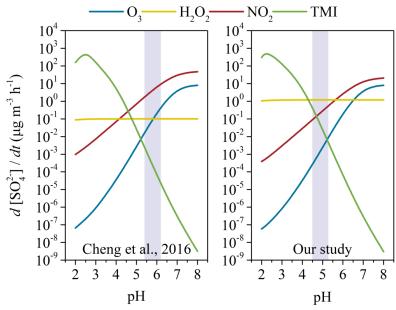
403

- 404
- 405

406


407

409 Figure 4. Daily variation of SOR under different atmospheric RH conditions during the sampling



412

410

411

413Figure 5. The correlations among aerosol pH, atmospheric RH and atmospheric SO_4^{2-} (a), the414average concentrations of NO₂, H₂O₂ and O₃ (b, c, d) under different pollution conditions (clean415(C), PM_{2.5}<35 µg m⁻³; slightly polluted (SP), 35 µg m⁻³<PM_{2.5}<75 µg m⁻³; polluted (P), 75 µg416m⁻³<PM_{2.5}<150 µg m⁻³; heavy polluted (HP), PM_{2.5}>150 µg m⁻³) during the sampling period.417

420 aerosol pH conditions between in the study of Cheng et al., (2016) and in this study.

421 422

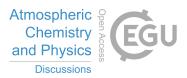
Table 1. The average concentrations of the species in $PM_{2.5}$ (µg m⁻³) and typical gaseous

423 424 pollutants (ppb) during C&SP episodes (PM_{2.5}<75 μg m⁻³), during P&HP episodes (PM_{2.5}≥75 μg m⁻³) and during the whole sampling period.

species	during C&SP episodes	during P&HP episodes	total
	(n=210)	(n=108)	(n=318)
PM _{2.5}	30.00 ± 17.79	113.35 ± 28.10	58.31 ± 45.15
Na^+	2.88 ± 1.11	3.68 ± 1.19	3.15 ± 1.21
Mg^{2+}	0.05 ± 0.03	0.08 ± 0.06	0.06 ± 0.04
Ca^{2+}	0.52 ± 0.33	0.67 ± 0.48	0.58 ± 0.40
\mathbf{K}^+	0.81 ± 0.42	1.84 ± 0.73	1.16 ± 0.73
$\mathrm{NH_{4}^{+}}$	1.90 ± 1.90	11.52 ± 4.93	5.17 ± 5.62
SO4 ²⁻	3.64 ± 1.87	14.96 ± 7.80	7.47 ± 7.18
NO ₃ -	3.44 ± 3.57	17.15 ± 7.36	8.10 ± 8.32
Cl ⁻	1.89 ± 1.20	7.35 ± 2.97	3.73 ± 3.26
NO ₂ -	0.06 ± 0.08	0.06 ± 0.05	0.06 ± 0.07
OC	12.10 ± 9.25	43.34 ± 13.88	22.73 ± 18.48
EC	3.98 ± 3.42	12.69 ± 6.43	7.58 ± 6.51
NO _x	39.38 ± 35.25	107.71 ± 58.44	62.59 ± 54.98
NO_2	21.46 ± 13.04	42.81 ± 10.96	28.71 ± 15.98
SO_2	6.99 ± 3.64	15.70 ± 6.55	9.95 ± 6.35
O_3	8.01 ± 6.35	2.13 ± 0.56	6.01 ± 5.87
HONO	0.60 ± 0.43	1.90 ± 0.97	1.01 ± 0.87
H_2O_2	0.17 ± 0.11	0.29 ± 0.14	0.20 ± 0.13

425

426


Table 2. The comparisons for parameters of sulfate production rate calculations between in the study of Charge et al. (2016) and in this work during the most polluted have periods

427	study of Cheng et al., (2016) and in this work during the most polluted haze periods		
	Parameters	This study	Cheng et al., (2016)
	NO ₂	57 ppb	66 ppb
	H_2O_2	0.25 ppb	0.01 ppb
	O ₃	2 ppb	1 ppb
	SO_2	35 ppb	40 ppb
	Fe(III) ^a	18 ng m ⁻³	18 ng m ⁻³
	Mn(II) ^a	42 ng m ⁻³	42 ng m ⁻³
	ALWC	146 µg m ⁻³	300 μg m ⁻³
	Aerosol droplet radius (R) ^a	0.15 μm	0.15 μm
	Temperature	270 K	271 K
	pH	4.5-5.3	5.4-6.2

428 a: both the concentrations of Fe(III) and Mn(II) and aerosol droplet radius were not measured in

429 this study and were derived from Cheng et al., (2016).

- 432 Bei, N., Wu, J., Elser, M., Feng, T., Cao, J., El-Haddad, I., Li, X., Huang, R., Li, Z., Long, X., Xing, L.,
- 433 Zhao, S., Tie, X., Prévôt, A. S. H., and Li, G.: Impacts of meteorological uncertainties on the haze
- 434 formation in Beijing-Tianjin-Hebei (BTH) during wintertime: a case study, Atmospheric Chemistry
- 435 and Physics, 17, 14579-14591, 10.5194/acp-17-14579-2017, 2017.
- 436 Bougiatioti, A., Nikolaou, P., Stavroulas, I., Kouvarakis, G., Weber, R., Nenes, A., Kanakidou, M., and
- 437 Mihalopoulos, N.: Particle water and pH in the eastern Mediterranean: source variability and
- 438 implications for nutrient availability, Atmospheric Chemistry and Physics, 16, 4579-4591,
- 439 10.5194/acp-16-4579-2016, 2016.
- 440 Chan, C. K., and Yao, X.: Air pollution in mega cities in China, Atmospheric Environment, 42, 1-42,
- 441 10.1016/j.atmosenv.2007.09.003, 2008.
- 442 Chen, L. H., Sun, Y. Y., Wu, X. C., Zhang, Y. X., Zheng, C. H., Gao, X., and Cen, K.: Unit-based
- emission inventory and uncertainty assessment of coal-fired power plants, Atmospheric Environment,
 99, 527-535, 10.1016/j.atmosenv.2014.10.023, 2014.
- 445 Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael,
- 446 G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during
- 447 haze events in China, Science Advances, 2, 1-11, 10.1126/sciadv.1601530, 2016.
- 448 Clifton, C. L., Altstein, N., and Huie, R. E.: Rate-constant for the reaction of NO₂ with sulfur(IV) over
- 449 the pH range 5.3-13, Environ. Sci. Technol., 22, 586-589, 10.1021/es00170a018, 1988.
- 450 Dai, Q., Bi, X., Song, W., Li, T., Liu, B., Ding, J., Xu, J., Song, C., Yang, N., Schulze, B. C., Zhang, Y.,
- 451 Feng, Y., and Hopke, P. K.: Residential coal combustion as a source of primary sulfate in Xi'an, China,
- 452 Atmospheric Environment, 196, 66-76, 10.1016/j.atmosenv.2018.10.002, 2019.
- Ding, J., Zhao, P., Su, J., Dong, Q., Du, X., and Zhang, Y.: Aerosol pH and its driving factors in Beijing,
 Atmospheric Chemistry and Physics, 19, 7939-7954, 10.5194/acp-19-7939-2019, 2019.
- 455 Du, Q., Zhang, C., Mu, Y., Cheng, Y., Zhang, Y., Liu, C., Song, M., Tian, D., Liu, P., Liu, J., Xue, C.,
- 456 and Ye, C.: An important missing source of atmospheric carbonyl sulfide: Domestic coal combustion,
- 457 Geophysical Research Letters, 43, 8720-8727, 10.1002/2016gl070075, 2016.
- 458 Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium
- 459 model for K⁺-Ca²⁺-Mg²⁺-NH₄⁺-Na⁺-SO₄²⁻-NO₃⁻-Cl⁻-H₂O aerosols, Atmospheric Chemistry and Physics,
- 460 7, 4639-4659, 2007.
- Ge, X., He, Y., Sun, Y., Xu, J., Wang, J., Shen, Y., and Chen, M.: Characteristics and Formation
 Mechanisms of Fine Particulate Nitrate in Typical Urban Areas in China, Atmosphere, 8, 62,
 10.3390/atmos8030062, 2017.
- Graedel, T. E., and Weschler, C. J.: Chemistry within aqueous atmospheric aerosols and raindrops,
 Reviews of Geophysics, 19, 505-539, 10.1029/RG019i004p00505, 1981.
- Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite, J. R., Carlton, A. G., Lee, S. H.,
 Bergin, M. H., Ng, N. L., Nenes, A., and Weber, R. J.: Fine-particle water and pH in the southeastern
- 468 United States, Atmospheric Chemistry and Physics, 15, 5211-5228, 10.5194/acp-15-5211-2015, 2015.
- 469 Guo, H., Weber, R. J., and Nenes, A.: High levels of ammonia do not raise fine particle pH sufficiently
- to yield nitrogen oxide-dominated sulfate production, Scientific reports, 7, 12109,
 10.1038/s41598-017-11704-0, 2017.
- 472 Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L.,
- 473 Molina, M. J., and Zhang, R.: Elucidating severe urban haze formation in China, Proceedings of the
- 474 National Academy of Sciences of the United States of America, 111, 17373-17378,
- 475 10.1073/pnas.1419604111, 2014.

- 476 He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., Tang, G., Liu, C., Zhang, H., and Hao, J.: Mineral
- 477 dust and NO_x promote the conversion of SO_2 to sulfate in heavy pollution days, Scientific reports, 4,
- 478 1-5, 10.1038/srep04172, 2014.
- 479 He, P., Xie, Z., Chi, X., Yu, X., Fan, S., Kang, H., Liu, C., and Zhan, H.: Atmospheric $\Delta 170(NO_3^{-1})$
- reveals nocturnal chemistry dominates nitrate production in Beijing haze, Atmospheric Chemistry and
 Physics, 18, 14465-14476, 10.5194/acp-18-14465-2018, 2018.
- 482 Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J., and Nenes, A.: A critical evaluation of proxy
- 483 methods used to estimate the acidity of atmospheric particles, Atmospheric Chemistry and Physics, 15,
 484 2775-2790, 10.5194/acp-15-2775-2015, 2015.
- 485 Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Daellenbach, K. R., Slowik, J. G.,
- 486 Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
- 487 Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat,
- S., Baltensperger, U., El Haddad, I., and Prevot, A. S.: High secondary aerosol contribution to
 particulate pollution during haze events in China, Nature, 514, 218-222, 10.1038/nature13774, 2014.
- 490 Ibusuki, T., and Takeuchi, K.: Sulfur-dioxide oxidation by oxygen catalyzed by mixtures of
- 491 manganese(II) and iron(III) in aqueous-solutions at environmental reaction conditions, Atmospheric
 492 Environment, 21, 1555-1560, 10.1016/0004-6981(87)90317-9, 1987.
- Kuang, Y., Zhao, C. S., Ma, N., Liu, H. J., Bian, Y. X., Tao, J. C., and Hu, M.: Deliquescent phenomena
 of ambient aerosols on the North China Plain, Geophysical Research Letters, 43, 8744-8750,
 10.1002/2016gl070273, 2016.
- Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q., Tie, X., and Molina,
 L. T.: A possible pathway for rapid growth of sulfate during haze days in China, Atmospheric
 Chemistry and Physics, 17, 3301-3316, 10.5194/acp-17-3301-2017, 2017.
- Li, J., Liao, H., Hu, J., and Li, N.: Severe particulate pollution days in China during 2013-2018 and the
 associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions,
- 501 Environ Pollut, 248, 74-81, 10.1016/j.envpol.2019.01.124, 2019.
- 502 Li, L., Hoffmann, M. R., and Colussi, A. J.: Role of nitrogen dioxide in the production of sulfate during
- 503 Chinese haze-aerosol episodes, Environ Sci Technol, 52, 2686-2693, 10.1021/acs.est.7b05222, 2018.
- Li, Q., Li, X., Jiang, J., Duan, L., Ge, S., Zhang, Q., Deng, J., Wang, S., and Hao, J.: Semi-coke
 briquettes: towards reducing emissions of primary PM_{2.5}, particulate carbon, and carbon monoxide
- 506 from household coal combustion in China, Scientific reports, 6, 1-10, 10.1038/srep19306, 2016.
- Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu, Y., and Zhu, T.: Fine
 particle pH during severe haze episodes in northern China, Geophysical Research Letters, 44, 1-9,
 10.1002/2017GL073210, 2017a.
- 510 Liu, P., Zhang, C., Mu, Y., Liu, C., Xue, C., Ye, C., Liu, J., Zhang, Y., and Zhang, H.: The possible
- 511 contribution of the periodic emissions from farmers' activities in the North China Plain to atmospheric 512 water-soluble ions in Beijing, Atmospheric Chemistry and Physics, 16, 10097-10109,
- 513 10.5194/acp-16-10097-2016, 2016a.
- 514 Liu, P., Zhang, C., Xue, C., Mu, Y., Liu, J., Zhang, Y., Tian, D., Ye, C., Zhang, H., and Guan, J.: The
- 515 contribution of residential coal combustion to atmospheric $PM_{2.5}$ in northern China during winter,
- 516 Atmospheric Chemistry and Physics, 17, 11503-11520, 10.5194/acp-17-11503-2017, 2017b.
- 517 Liu, Q., Jing, B., Peng, C., Tong, S., Wang, W., and Ge, M.: Hygroscopicity of internally mixed
- 518 multi-component aerosol particles of atmospheric relevance, Atmospheric Environment, 125, 69-77,
- 519 10.1016/j.atmosenv.2015.11.003, 2016b.

- 520 Ma, Q., Wang, T., Liu, C., He, H., Wang, Z., Wang, W., and Liang, Y.: SO₂ Initiates the efficient
- 521 conversion of NO₂ to HONO on MgO Surface, Environ Sci Technol, 51, 3767-3775,
 522 10.1021/acs.est.6b05724, 2017.
- 523 Meng, Z. Y., Lin, W. L., Jiang, X. M., Yan, P., Wang, Y., Zhang, Y. M., Jia, X. F., and Yu, X. L.:
- 524 Characteristics of atmospheric ammonia over Beijing, China, Atmospheric Chemistry and Physics, 11,
- 525 6139-6151, 10.5194/acp-11-6139-2011, 2011.
- 526 Murphy, J. G., Gregoire, P. K., Tevlin, A. G., Wentworth, G. R., Ellis, R. A., Markovic, M. Z., and
- 527 VandenBoer, T. C.: Observational constraints on particle acidity using measurements and modelling of
- 528 particles and gases, Faraday Discussions, 200, 379-395, 10.1039/c7fd00086c, 2017.
- 529 Nie, W., Ding, A., Wang, T., Kerminen, V. M., George, C., Xue, L., Wang, W., Zhang, Q., Petaja, T., Qi,
- 530 X., Gao, X., Wang, X., Yang, X., Fu, C., and Kulmala, M.: Polluted dust promotes new particle
- 531 formation and growth, Scientific reports, 4, 1-6, 10.1038/srep06634, 2014.
- Pathak, R. K., Louie, P. K. K., and Chan, C. K.: Characteristics of aerosol acidity in Hong kong,
 Atmospheric Environment, 38, 2965-2974, 10.1016/j.atmosenv.2004.02.044, 2004.
- 534 Quan, J., Tie, X., Zhang, Q., Liu, Q., Li, X., Gao, Y., and Zhao, D.: Characteristics of heavy aerosol
- 535 pollution during the 2012–2013 winter in Beijing, China, Atmospheric Environment, 88, 83-89,
- 536 10.1016/j.atmosenv.2014.01.058, 2014.
- Ravishankara, A.: Heterogeneous and multiphase chemistry in the troposphere, Science, 276,1058-1065, 1997.
- Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics, from Air Pollution to Climate
 Change, Wiley, 429-443 pp., 2006.
- 541 Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R. V., Philip, S., Song, S., Zhao,
- 542 Y., Xie, Z., Zhang, L., and Alexander, B.: Heterogeneous sulfate aerosol formation mechanisms during
- wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen
 isotopes in Beijing, Atmospheric Chemistry and Physics, 19, 6107-6123, 10.5194/acp-19-6107-2019,
 2019.
- Shi, G., Xu, J., Peng, X., Xiao, Z., Chen, K., Tian, Y., Guan, X., Feng, Y., Yu, H., Nenes, A., and
 Russell, A. G.: pH of aerosols in a polluted atmosphere: source contributions to highly acidic aerosol,
- 548 Environ Sci Technol, 51, 4289-4296, 10.1021/acs.est.6b05736, 2017.
- 549 Tham, Y. J., Wang, Z., Li, Q., Wang, W., Wang, X., Lu, K., Ma, N., Yan, C., Kecorius, S., Wiedensohler,
- A., Zhang, Y., and Wang, T.: Heterogeneous N₂O₅ uptake coefficient and production yield of ClNO₂ in
 polluted northern China: roles of aerosol water content and chemical composition, Atmospheric
- 552 Chemistry and Physics, 18, 13155-13171, 10.5194/acp-18-13155-2018, 2018.
- 553 Tong, S. R., Hou, S. Q., Zhang, Y., Chu, B. W., Liu, Y. C., He, H., Zhao, P. S., and Ge, M. F.: Exploring
- the nitrous acid (HONO) formation mechanism in winter Beijing: direct emissions and heterogeneous
 production in urban and suburban areas, Faraday Discussions, 189, 213-230, 10.1039/c5fd00163c,
- 556 2016.
- 557 Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J., Guo, S.,
- 558 Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang,
- 559 J., Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M., Wang, W.,
- 560 Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D.,
- 561 Liss, P. S., Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London Fog
- 562 to Chinese haze, Proceedings of the National Academy of Sciences of the United States of America,
- 563 113, 13630-13635, 2016.

564 Wang, G., Zhang, F., Peng, J., Duan, L., Ji, Y., Marrero-Ortiz, W., Wang, J., Li, J., Wu, C., Cao, C., 565 Wang, Y., Zheng, J., Secrest, J., Li, Y., Wang, Y., Li, H., Li, N., and Zhang, R.: Particle acidity and sulfate production during severe haze events in China cannot be reliably inferred by assuming a 566 567 mixture of inorganic salts, Atmospheric Chemistry and Physics, 18, 10123-10132, 568 10.5194/acp-18-10123-2018, 2018a. 569 Wang, H., Lu, K., Chen, X., Zhu, Q., Wu, Z., Wu, Y., and Sun, K.: Fast particulate nitrate formation via N2O5 uptake aloft in winter in Beijing, Atmospheric Chemistry and Physics, 18, 10483-10495, 570 571 10.5194/acp-18-10483-2018, 2018b. 572 Wang, H., Lu, K., Guo, S., Wu, Z., Shang, D., Tan, Z., Wang, Y., Le Breton, M., Lou, S., Tang, M., Wu, 573 Y., Zhu, W., Zheng, J., Zeng, L., Hallquist, M., Hu, M., and Zhang, Y.: Efficient N2O5 uptake and NO3 574 oxidation in the outflow of urban Beijing, Atmospheric Chemistry and Physics, 18, 9705-9721, 575 10.5194/acp-18-9705-2018, 2018c. 576 Wang, J., Zhang, X., Guo, J., Wang, Z., and Zhang, M.: Observation of nitrous acid (HONO) in Beijing, 577 China: Seasonal variation, nocturnal formation and daytime budget, The Science of the total 578 environment, 587-588, 350-359, 10.1016/j.scitotenv.2017.02.159, 2017. 579 Wang, Y., Yao, L., Wang, L., Liu, Z., Ji, D., Tang, G., Zhang, J., Sun, Y., Hu, B., and Xin, J.: 580 Mechanism for the formation of the January 2013 heavy haze pollution episode over central and 581 eastern China, Science China Earth Sciences, 57, 14-25, 10.1007/s11430-013-4773-4, 2013. 582 Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity despite declining 583 atmospheric sulfate concentrations over the past 15 years, Nature Geoscience, 9, 282-285, 584 10.1038/ngeo2665, 2016. 585 Wu, J., Bei, N., Hu, B., Liu, S., Zhou, M., Wang, Q., Li, X., Liu, L., Feng, T., Liu, Z., Wang, Y., Cao, J., 586 Tie, X., Wang, J., Molina, L. T., and Li, G.: Is water vapor a key player of the wintertime haze in North 587 China Plain?, Atmospheric Chemistry and Physics, 19, 8721-8739, 10.5194/acp-19-8721-2019, 2019. 588 Xu, L., Duan, F., He, K., Ma, Y., Zhu, L., Zheng, Y., Huang, T., Kimoto, T., Ma, T., Li, H., Ye, S., Yang, 589 S., Sun, Z., and Xu, B.: Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing, Environ Pollut, 227, 296-305, 10.1016/j.envpol.2017.04.076, 2017. 590 591 Xu, W. Y., Zhao, C. S., Ran, L., Deng, Z. Z., Liu, P. F., Ma, N., Lin, W. L., Xu, X. B., Yan, P., He, X., 592 Yu, J., Liang, W. D., and Chen, L. L.: Characteristics of pollutants and their correlation to 593 meteorological conditions at a suburban site in the North China Plain, Atmospheric Chemistry and 594 Physics, 11, 4353-4369, 10.5194/acp-11-4353-2011, 2011. 595 Xue, C., Ye, C., Ma, Z., Liu, P., Zhang, Y., Zhang, C., Tang, K., Zhang, W., Zhao, X., Wang, Y., Song, 596 M., Liu, J., Duan, J., Qin, M., Tong, S., Ge, M., and Mu, Y.: Development of stripping coil-ion 597 chromatograph method and intercomparison with CEAS and LOPAP to measure atmospheric HONO, 598 The Science of the total environment, 646, 187-195, 10.1016/j.scitotenv.2018.07.244, 2019a. 599 Xue, C., Ye, C., Zhang, Y., Ma, Z., Liu, P., Zhang, C., Zhao, X., Liu, J., and Mu, Y.: Development and 600 application of a twin open-top chambers method to measure soil HONO emission in the North China Plain, Sci. Total Environ., 659, 621-631, 10.1016/j.scitotenv.2018.12.245, 2019b. 601 602 Xue, J., Griffith, S. M., Yu, X., Lau, A. K. H., and Yu, J. Z.: Effect of nitrate and sulfate relative 603 abundance in PM_{2.5} on liquid water content explored through half-hourly observations of inorganic 604 soluble aerosols at a polluted receptor site, Atmospheric Environment, 99, 24-31, 605 10.1016/j.atmosenv.2014.09.049, 2014. 606 Xue, J., Yuan, Z., Griffith, S. M., Yu, X., Lau, A. K., and Yu, J. Z.: Sulfate Formation Enhanced by a 607 Cocktail of High NO_x, SO₂, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities

- 608 in China: An Observation-Based Modeling Investigation, Environ Sci Technol, 50, 7325-7334,
- 609 10.1021/acs.est.6b00768, 2016.
- 610 Yang, T., Sun, Y., Zhang, W., Wang, Z., Liu, X., Fu, P., and Wang, X.: Evolutionary processes and
- sources of high-nitrate haze episodes over Beijing, Spring, J Environ Sci (China), 54, 142-151,
 10.1016/j.jes.2016.04.024, 2017.
- 613 Yang, Y. R., Liu, X. G., Qu, Y., An, J. L., Jiang, R., Zhang, Y. H., Sun, Y. L., Wu, Z. J., Zhang, F., Xu,
- 614 W. Q., and Ma, Q. X.: Characteristics and formation mechanism of continuous hazes in China: a case
- 615 study during the autumn of 2014 in the North China Plain, Atmospheric Chemistry and Physics, 15,
- 616 8165-8178, 10.5194/acp-15-8165-2015, 2015.
- 617 Ye, C., Liu, P., Ma, Z., Xue, C., Zhang, C., Zhang, Y., Liu, J., Liu, C., Sun, X., and Mu, Y.: High H₂O₂
- 618 Concentrations Observed during Haze Periods during the Winter in Beijing: Importance of H2O2
- Oxidation in Sulfate Formation, Environmental Science & Technology Letters, 5, 757-763,
 10.1021/acs.estlett.8b00579, 2018.
- 621 Zhang, H., Chen, S., Zhong, J., Zhang, S., Zhang, Y., Zhang, X., Li, Z., and Zeng, X. C.: Formation of
- 622 aqueous-phase sulfate during the haze period in China: Kinetics and atmospheric implications,
- 623 Atmospheric Environment, 177, 93-99, 10.1016/j.atmosenv.2018.01.017, 2018.
- 624 Zhang, Q., He, K. B., and Huo, H.: Cleaning China's air, Nature, 484, 161-162, 2012.
- 625 Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W., Hu, M., and Wang, Y.:
- Formation of urban fine particulate matter, Chem Rev, 115, 3803-3855, 10.1021/acs.chemrev.5b00067,2015.
- 628 Zhao, M., Wang, S., Tan, J., Hua, Y., Wu, D., and Hao, J.: Variation of Urban Atmospheric Ammonia
- Pollution and its Relation with PM2.5 Chemical Property in Winter of Beijing, China, Aerosol and Air
 Quality Research, 16, 1390-1402, 10.4209/aaqr.2015.12.0699, 2016.
- 631 Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and Kimoto,
- 632 T.: Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic
- 633 aerosol formation during the January 2013 haze episode in North China, Atmospheric Chemistry and
- 634 Physics, 15, 2031-2049, 10.5194/acp-15-2031-2015, 2015a.
- 635 Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T.,
- 636 Chang, D., Pöschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the
- 637 impact of synoptic weather, regional transport and heterogeneous reactions, Atmospheric Chemistry
 638 and Physics, 15, 2969-2983, 10.5194/acp-15-2969-2015, 2015b.
- 639 Zhong, J., Zhang, X., Wang, Y., Wang, J., Shen, X., Zhang, H., Wang, T., Xie, Z., Liu, C., Zhang, H.,
- 640 Zhao, T., Sun, J., Fan, S., Gao, Z., Li, Y., and Wang, L.: The two-way feedback mechanism between
- 641 unfavorable meteorological conditions and cumulative aerosol pollution in various haze regions of
- 642 China, Atmospheric Chemistry and Physics, 19, 3287-3306, 10.5194/acp-19-3287-2019, 2019.
- 643